Abstract

Summary
This work is carried out in order to identify the effective factors in cloud computing adoption among the staff of the Physical Education faculties in Tehran. For this purpose, 400 persons from the staff of the Physical Education faculties in Tehran are selected, and 278 valid questionnaires are used for the statistical analysis. The research tools are two questionnaires including the cloud computing adoption (12 components including 47 items) and adoption intention questionnaire (3 items) designed by the researchers. The path analysis test shows that 11 factors affect positively and the complexity negatively affects the intention to cloud computing adoption. Technology readiness also has the highest impact on the cloud computing adoption. The technology readiness, data security, and reduced complexity among the Physical Education faculties have been identified as the most important factors in the cloud computing adoption.
Introduction
The purpose of this work is to identify the effective factors in cloud computing adoption among the staff of the Physical Education faculties in Tehran.
Methodology and Approach
In terms of purpose, this work was a kind of applied research, and in terms of data collection, it was descriptive-survey. For this purpose, the staff of the Physical Education faculties in Tehran (400 persons) were sampled, and 278 valid questionnaires were used for the statistical analysis. The research tools were two questionnaires including the cloud computing adoption (12 components including 47 items) and adoption intention questionnaire (3 items) designed by the researchers. The face validity of the instrument was confirmed by 12 faculty members in sport management, and the content validity was confirmed by the confirmatory factor analysis. The reliability of the instrument was assessed by Cronbach's alpha for the whole effective factors’ questionnaire (α = 0.921) and the adoption intention questionnaire (α = 0.769).
Results and Conclusions
The findings showed that the research instrument was well-suited to measure the effective factors in cloud computing adoption, and the path analysis test showed the effects of 12 factors on the intention to adopt cloud computing. 11 factors affected positively, and the complexity negatively affected the intention to cloud computing adoption. Technology readiness also had the highest impact on the cloud computing adoption. Based on the results obtained, 12 effective factors in cloud computing adoption were identified and evaluated among the Physical Education faculties in Tehran. Technology readiness, data security, and reduced complexity among the Physical Education faculties were identified as the most important factors in cloud computing adoption and could have a beneficial effect on a faster cloud computing adoption.

Keywords

Main Subjects

پورسلطانی زرندی، حسین و ایرجی نقدر، رامین. (1392). ارتباط مدیریت دانش با خلاقیت کارکنان اداره کل تربیت‌بدنی دانشگاه فردوسی مشهد. نشریه مدیریت منابع انسانی در ورزش، 1(1)، 61-71.
حیدری دهویی، جلیل؛ محمدی، نوید؛ ونکی، امیر سالار و جمالی، محسن. (1396). ارائه چهارچوبی به‌منظور انتخاب سامانه مناسب برای پیاده‌سازی رایانش ابری (مطالعه موردی: دانشکده علوم و فنون نوین دانشگاه تهران). نشریه مدیریت فناوری اطلاعات، 9(4)، 759-786.
حقیقی، مهدی؛ حامی، محمد و شجاعی، وحید. (1397). بررسی عوامل مؤثر بر چابکی سازمانی در ادارات ورزش و جوانان استان مازندران. مدیریت منابع انسانی در ورزش، 5(2)، 249-262.
والمحمدی، چنگیز و مظاهری، مریم‌السادات. (1396). تبیین عوامل تأثیرگذار بر تصمیم به استفاده از رایانش ابری در میان کارکنان سازمان صداوسیما بر مبنای مدل پذیرش فناوری. فصلنامه مطالعات مدیریت فناوری اطلاعات، 5(19)، 105-124.
یعقوبی، نور محمد؛ جعفری، حمید رضا و شکوهی، جواد. (1393). شناسایی و رتبه‌بندی عوامل ریسک رایانش ابری در سازمان‌های دولتی. پژوهشنامه پردازش و مدیریت اطلاعات، 30(3)، 759-784.
Aaron, L. S., & Roche, C. M. (2011). Teaching, learning, and collaborating in the cloud: Applications of cloud computing for educators in post-secondary institutions. Journal of Educational Technology Systems, 40(2), 95-111.
Alhammadi, A., Stanier, C., & Eardley, A. (2015). The determinants of cloud computing adoption in Saudi Arabia. Computer Science & Information Technology, 5, 55-67.
Ali, M. B., Wood-Harper, T., & Ramlogan, R. (2020). A Framework Strategy to Overcome Trust Issues on Cloud Computing Adoption in Higher Education. In Modern Principles, Practices, and Algorithms for Cloud Security (pp. 162-183). IGI Global.
Alshamaila, Y., Papagiannidis, S., & Li, F. (2013). Cloud computing adoption by SMEs in the north east of England: A multi-perspective framework. Journal of Enterprise Information Management, 26(3), 250-275.
Arpaci, I. (2017). Antecedents and consequences of cloud computing adoption in education to achieve knowledge management. Computers in Human Behavior, 70, 382-390.
Chang, V. I. (2020). A proposed framework for cloud computing adoption. In Sustainable Business: Concepts, Methodologies, Tools, and Applications (pp. 978-1003). IGI Global.
Changchit, C., & Chuchuen, C. (2018). Cloud computing: an examination of factors impacting users’ adoption. Journal of Computer Information Systems, 58(1), 1-9.
Christauskas, Č., & Misevičienė, R. (2012). Cloud-computing based accounting for small to medium sized business.  Economics of Engineering Decisions. 23(1), 14-21.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly. 13(3), 319-340.
Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of Enterprise Information Management, 28(1), 107-130.
Hinde, C., & Van Belle, J. P. (2012). Cloud computing in South African SMMEs: Risks and rewards for playing at altitude. International Journal of Computer Science and Electrical Engineering, 1(1), 1-10.
Jones, S., Irani, Z., Sivarajah, U., & Love, P. E. (2017). Risks and rewards of cloud computing in the UK public sector: A reflection on three Organisational case studies. Information systems frontiers, 21(2): 359-382.
Khayer, A., Talukder, M. S., Bao, Y., & Hossain, M. N. (2020). Cloud computing adoption and its impact on SMEs’ performance for cloud supported operations: A dual-stage analytical approach. Technology in Society, 60(101225), 1-15.
Lin, A., & Chen, N. C. (2012). Cloud computing as an innovation: Perception, attitude, and adoption. International Journal of Information Management, 32(6), 533-540.
Njenga, K., Garg, L., Bhardwaj, A. K., Prakash, V., & Bawa, S. (2019). The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward. Telematics and Informatics, 38, 225-246.
Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & Management, 51(5), 497-510.
Panda, S. K., Gupta, I., & Jana, P. K. (2019). Task scheduling algorithms for multi-cloud systems: allocation-aware approach. Information Systems Frontiers, 21(2), 241-259.
Paquette, S., Jaeger, P. T., & Wilson, S. C. (2010). Identifying the security risks associated with governmental use of cloud computing. Government information quarterly, 27(3), 245-253.
Priyadarshinee, P. (2020). Cloud Computing Adoption: A Scale Development Approach. In Modern Principles, Practices, and Algorithms for Cloud Security (pp. 107-128). IGI Global.
Qasem, Y. A., Abdullah, R., Jusoh, Y. Y., Atan, R., & Asadi, S. (2019). Cloud Computing Adoption in Higher Education Institutions: A Systematic Review. IEEE Access, 7, 63722-63744.
Raza, M. H., Adenola, A. F., Nafarieh, A., & Robertson, W. (2015). The slow adoption of cloud computing and IT workforce. Procedia Computer Science, 52, 1114-1119.
Rogers, E. (2003). Diffusion of innovation. 5th ed. NY. USA: Free Press
Sabi, H. M., Uzoka, F. M. E., Langmia, K., Njeh, F. N., & Tsuma, C. K. (2018). A cross-country model of contextual factors impacting cloud computing adoption at universities in sub-Saharan Africa. Information Systems Frontiers, 20(6), 1381-1404.
Statista. 2015. Revenue of the Global Cloud Software Market. Retrieved from wide-cloud-software-market-revenue/ http://www.statista.com/statistics/460010/world
Tarhini, A., Al-Badi, A., Almajali, M., & Alrabayaah, S. H. (2017). Factors Influencing Employees¡¯ Intention to Use Cloud Computing. Journal of Management and Strategy, 8(2), 47-62.
Tung, F. C., Chang, S. C., & Chou, C. M. (2008). An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry. International journal of medical informatics, 77(5), 324-335.
Villapol, M. E., Jansen, H., Morales, A., Flores, J., Rodrigues, H., & Huerta, M. (2017). Recording, storing and querying judo match data using an Android tool and Cloud computing. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 231(4), 243-252.
Yaokumah, W., & Amponsah, R. A. (2019). Examining the contributing factors for cloud computing adoption in a developing country. In Cloud Security: Concepts, Methodologies, Tools, and Applications (pp. 1663-1685). IGI Global.
Yeboah-Boateng, E. O., & Essandoh, K. A. (2013). Cloud computing: the level of awareness amongst small & medium-sized enterprises (SMEs) in developing economies. Journal of Emerging Trends in Computing and Information Sciences, 4(11), 832-839.